How to Do Object Detection Using Hugging Face API in Laravel
Object detection plays a vital role in modern applications, from automated surveillance to retail inventory management. By leveraging the Hugging Face API, developers can integrate cutting-edge AI models into their Laravel applications seamlessly. This guide walks through the process of setting up object detection in Laravel using the Hugging Face API.
In this article we will learn how to implement object detection using Hugging Face API and AI models.We will be using facebook/detr-resnet-50 model for object detection here. In this article we will make a system where we can upload an image and as an output will receive an image which outlines the objects with their object type and scoring percentage.
If you want to know how to get started with Hugging Face API and how to get Access Token, then you can read this article to get a full overview of how to get started with Hugging Face API in PHP Laravel.
Why Use Hugging Face for Object Detection?
Hugging Face offers state-of-the-art AI models that can be easily integrated into applications. Here’s why using Hugging Face for object detection is beneficial:
- Pre-trained Models: No need to train models from scratch.
- Easy API Access: Simple REST API for making predictions.
- Scalability: Handles large-scale image processing.
- Fast and Efficient: Uses optimized deep learning models for quick response times.
Where Can Object Detection Be Used?
- Security & Surveillance
- Retail & Inventory Management
- Healthcare & Medical Imaging
- Autonomous Driving
- Image Search
- Object Tracking in Matches
- Agriculture & Farming
Step 1: Having Access Token
Make sure you have Hugging Face access token stored anywhere in the project, so that we can use it while dealing with Hugging Face API's. In My case i have stored the access token in my .env file. It should look something like this.
HUGGINGFACE_TOKEN=hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Step 2: Define Routes
I have created two routes here, one for the UI and another is to process the image and for dealing with Hugging face API.
Route::get('/object-detection', [HuggingFaceController::class, 'objectDetection']);
Route::post('/object-detection-matching', [HuggingFaceController::class, 'objectDetectionMatching'])->name('object-detection-matching');
Step 3: HuggingFaceController.php
public function objectDetection() { $objectDetected = false; return view('huggingface.object-detection', compact('objectDetected')); } public function objectDetectionMatching(Request $request) { $url = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50"; $image = $request->file('image'); if (!$image) { return response()->json(['error' => 'No image uploaded'], 400); } $imagePath = $image->store('uploads', 'public'); $imageUrl = asset('storage/' . $imagePath); // Convert image to base64 $imageData = file_get_contents($image->getRealPath()); // Send request to Hugging Face API $response = Http::withHeaders([ 'Authorization' => 'Bearer ' . env('HUGGINGFACE_TOKEN'), 'Content-Type' => 'application/json', ])->withBody($imageData, 'application/octet-stream')->post($url); // Convert response to array $result = $response->json(); return response()->json([ 'result' => $result, 'objectDetected' => !empty($result), 'imageUrl' => $imageUrl ]); }
Step 4: object-detection.blade.php
Next step is to setup your view file to render the image and show results that comes from Hugging Face API. I have used AJAX and Javascript to make the UI look better but you can use them according to your needs.
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Image Object Detection</title>
<script src="https://cdn.tailwindcss.com"></script>
</head>
<body class="bg-gray-100 flex items-center justify-center min-h-screen">
<div class="bg-white p-6 rounded-lg shadow-lg w-full text-center">
<h1 class="text-2xl font-bold mb-4 text-gray-700">Upload an Image for Object Detection</h1>
<!-- Image Upload Form -->
<form id="imageUploadForm" class="mb-4">
<div class="flex flex-col items-center">
<!-- Image Preview -->
<img id="imagePreview" class="hidden object-contain rounded-lg shadow mb-4" style="max-width: 600px" />
<input type="file" name="image" id="imageInput" required class="border p-2 rounded-lg mb-2">
<button type="submit" class="bg-blue-500 hover:bg-blue-600 text-white px-4 py-2 rounded-lg font-semibold">
Process Image
</button>
</div>
</form>
<!-- Loading Indicator -->
<div id="loading" class="hidden text-blue-500 font-semibold">Processing...</div>
<!-- Show Processed Image and Results -->
<h2 id="resultTitle" class="hidden text-lg font-bold mt-4">Detected Objects</h2>
<div class="relative flex justify-center mt-4">
<canvas id="canvas" class="hidden border border-gray-300 rounded-lg shadow-md" style="max-width: 600px"></canvas>
</div>
</div>
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
<script>
// Image preview before upload
document.getElementById('imageInput').addEventListener('change', function(event) {
const file = event.target.files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(e) {
const imagePreview = document.getElementById('imagePreview');
imagePreview.src = e.target.result;
imagePreview.classList.remove('hidden');
};
reader.readAsDataURL(file);
}
});
$(document).ready(function () {
$('#imageUploadForm').on('submit', function (event) {
event.preventDefault(); // Prevent form submission
let formData = new FormData();
let fileInput = document.getElementById('imageInput').files[0];
if (!fileInput) {
alert("Please select an image.");
return;
}
formData.append('image', fileInput);
$('#loading').removeClass('hidden'); // Show loading indicator
$.ajax({
url: "{{ route('object-detection-matching') }}", // Laravel route
type: "POST",
data: formData,
processData: false,
contentType: false,
headers: {
'X-CSRF-TOKEN': "{{ csrf_token() }}"
},
success: function (response) {
$('#loading').addClass('hidden'); // Hide loading indicator
if (response.objectDetected) {
$('#resultTitle').removeClass('hidden');
drawBoundingBoxes(response.imageUrl, response.result);
} else {
alert("No objects detected.");
}
},
error: function (xhr) {
$('#loading').addClass('hidden'); // Hide loading indicator
console.error("Error:", xhr.responseText);
alert("Something went wrong! Check the console for details.");
}
});
});
function drawBoundingBoxes(imageUrl, detections) {
const img = new Image();
img.src = imageUrl;
img.onload = function () {
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
// Resize canvas dynamically
const maxWidth = 1000; // Max width for UI
const scaleFactor = img.width > maxWidth ? maxWidth / img.width : 1;
canvas.width = img.width * scaleFactor;
canvas.height = img.height * scaleFactor;
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
ctx.strokeStyle = 'red';
ctx.lineWidth = 2;
ctx.font = "14px Arial";
ctx.fillStyle = "red";
if (Array.isArray(detections)) {
detections.forEach(det => {
if (det.box) {
const box = det.box;
const label = det.label || "Unknown";
const score = det.score ? (det.score * 100).toFixed(2) + "%" : "N/A"; // Convert to percentage
// Scale bounding boxes
const xmin = box.xmin * scaleFactor;
const ymin = box.ymin * scaleFactor;
const xmax = box.xmax * scaleFactor;
const ymax = box.ymax * scaleFactor;
ctx.strokeRect(xmin, ymin, xmax - xmin, ymax - ymin);
ctx.fillText(`${label} (${score})`, xmin, ymin - 5);
}
});
canvas.classList.remove('hidden');
} else {
console.error("Detections is not an array:", detections);
}
};
}
});
</script>
</body>
</html>